首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55579篇
  免费   4397篇
  国内免费   2996篇
  2024年   34篇
  2023年   652篇
  2022年   787篇
  2021年   1294篇
  2020年   1279篇
  2019年   1649篇
  2018年   1658篇
  2017年   1193篇
  2016年   1378篇
  2015年   1980篇
  2014年   2919篇
  2013年   3969篇
  2012年   2129篇
  2011年   2963篇
  2010年   2353篇
  2009年   2974篇
  2008年   3196篇
  2007年   3251篇
  2006年   2966篇
  2005年   2898篇
  2004年   2568篇
  2003年   2280篇
  2002年   2103篇
  2001年   1377篇
  2000年   1169篇
  1999年   1252篇
  1998年   1133篇
  1997年   914篇
  1996年   738篇
  1995年   959篇
  1994年   882篇
  1993年   798篇
  1992年   699篇
  1991年   509篇
  1990年   415篇
  1989年   372篇
  1988年   388篇
  1987年   347篇
  1986年   288篇
  1985年   343篇
  1984年   469篇
  1983年   314篇
  1982年   310篇
  1981年   189篇
  1980年   184篇
  1979年   154篇
  1978年   87篇
  1977年   55篇
  1976年   50篇
  1975年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
《Biomarkers》2013,18(4):232-243
Abstract

Covalent binding of reactive metabolites of pentachloropheno (PCP) was investigated both in vitro andin vivo in the livers of male Sprague-Dawley rats via measurement of protein adducts. Cysteinyl adducts of quinones andsemiquinones in liver cytosolic (Cp) andnuclear (Np) proteins were assayed after catalytic cleavage by Raney nickel. Results from in vitro experiments confirmed that PCP metabolism produced tetrachlorobenzoquinones andthe comsponding tetrachlorobentosemiquinones which subsequently bound to sulphydryl groups in liver proteins. In vivo, the production of cysteinyl adducts increased with the administered dosage (0–40 mg PCP per kg body weight) andpresented evidence of saturable metabolism. Results suggest two metabolic pathways for PCP, including a high-affinity low-capacity pathway anda low-affinity high-capacity pathway. Time-course experiments in vivo andin vitro suggested that quinone adducts partlcipated in multiple substitution reactions with protein and/or non-protein thiols, andpointed to possible formation of protein-protein cross-links in vivo. The elimination rate constants of quinone adducts in vitro were about 0.35 h?1 in liver Cp. The elimination of quinone adducts in vivo appeared to follow biphasic kinetics with rate constants for the terminal phase being 0.014 and0.008 h?1 in liver Cp andNp, respectively.  相似文献   
92.
Currently, no evidence exists on the effects of beta-receptor blocker (BRB) treatment in patients with unstable severe heart failure. When confronted with this specific patient category, clinical experience in our centre has consistently guided us to lower the dose or stop BRB therapy. To share this experience, we present three clinical case scenarios and discuss background literature motivating our approach in these patients.  相似文献   
93.
The gene of the capsid protein of bovine immunodeficiency virus (BIV) was linked to a sequence encoding for six histidines and expressed as the (His)6p26 capsid fusion protein. The fusion protein was strongly expressed as both soluble and insoluble forms after induction by isopropylthio-β- -galactoside. Purification was based on interaction of the hexa-histidine polypeptide with metal ions. Expression could represent 11% of the total protein inEscherichia coli,allowing more than 20 mg of highly purified protein to be obtained per liter of bacterial culture. The (His)6p26 capsid fusion protein purified by immobilized metal affinity chromatography reacted specifically in Western blot with sera from cattle experimentally infected by BIV, as well as with two monoclonal antibodies directed against different epitopes of the Gag protein. The ease of expression, purification, and specificity of this fusion protein should permit a thorough study of prevalence of BIV infection in large-scale serological studies of field samples.  相似文献   
94.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
95.
96.
The intrinsic activity of the C‐terminal catalytic (C) domain of cyclic guanosine monophosphate (cGMP)‐dependent protein kinases (PKG) is inhibited by interactions with the N‐terminal regulatory (R) domain. Selective binding of cGMP to cyclic nucleotide binding (CNB) domains within the R‐domain disrupts the inhibitory R–C interaction, leading to the release and activation of the C‐domain. Affinity measurements of mammalian and plasmodium PKG CNB domains reveal different degrees of cyclic nucleotide affinity and selectivity; the CNB domains adjacent to the C‐domain are more cGMP selective and therefore critical for cGMP‐dependent activation. Crystal structures of isolated CNB domains in the presence and absence of cyclic nucleotides reveal isozyme‐specific contacts that explain cyclic nucleotide selectivity and conformational changes that accompany CNB. Crystal structures of tandem CNB domains identify two types of CNB‐mediated dimeric contacts that indicate cGMP‐driven reorganization of domain–domain interfaces that include large conformational changes. Here, we review the available structural and functional information of PKG CNB domains that further advance our understanding of cGMP mediated regulation and activation of PKG isozymes.  相似文献   
97.
Molecular changes in the brain of individuals afflicted with Alzheimer's disease (AD) are an intense area of study. Little is known about the role of protein abundance and posttranslational modifications in AD progression and treatment, in particular large-scale intact N-linked glycoproteomics analysis. To elucidate the N-glycoproteome landscape, we developed an approach based on multi-lectin affinity enrichment, hydrophilic interaction chromatography, and LC-MS–based glycoproteomics. We analyzed brain tissue from 10 persons with no cognitive impairment or AD, 10 with asymptomatic AD, and 10 with symptomatic AD, detecting over 300 glycoproteins and 1900 glycoforms across the samples. The majority of glycoproteins have N-glycans that are high-mannosidic or complex chains that are fucosylated and bisected. The Man5 N-glycan was found to occur most frequently at >20% of the total glycoforms. Unlike the glycoproteomes of other tissues, sialylation is a minor feature of the brain N-glycoproteome, occurring at <9% among the glycoforms. We observed AD-associated differences in the number of antennae, frequency of fucosylation, bisection, and other monosaccharides at individual glycosylation sites among samples from our three groups. Further analysis revealed glycosylation differences in subcellular compartments across disease stage, including glycoproteins in the lysosome frequently modified with paucimannosidic glycans. These results illustrate the N-glycoproteomics landscape across the spectrum of AD clinical and pathologic severity and will facilitate a deeper understanding of progression and treatment development.  相似文献   
98.
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry–based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.  相似文献   
99.
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.  相似文献   
100.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号